HARYANA VISHWAKARMA SKIL UNIVERSITY

(CLASS NOTES)

SUBJECT: EDSC-101(APPLIED MATHEMATICS-I)

 FACULTY NAME: Dr. M.K. SRIVASTAV

हरियाणा विश्वकर्मा कौशल विश्वविद्यालय
HARYANA VISHWAKARMA SKILL UNIVERSITY

UNIT-1: SETS, RELATIONS AND FUNCTIONS

Set: A Set is a well-define collection of objects or elements.
Examples:

1. The collection of all boys in your class.
2. The collection of all the months of a year beginning with the letter $\mathrm{J}=\{$ January, June, July $\}$.

But:
3. The collection of ten most talented writers of India is NOT a Set, because it is not "a well defined collection of objects".
4. A team of eleven best-cricket batsman of the world is NOT a Set, because it is not "a well defined collection of objects".

Note:

- Sets are usually denoted by capital letters A, B, S, X, Y etc.
- The elements of a set are represented by small letters a, b, c, s, x, y, z, etc.
- If a is an element of a set A, then we say that " a belongs to A " and write as " $a \in \mathrm{~A}$ ".
- If a is not an element of a set A, then we say that " a does not belongs to A " and write as " $a \notin \mathrm{~A}$ ".

Some other examples of sets used in Mathematics:
N : The set of all natural numbers $=\{1,2,3, \ldots .$.
Z : The set of all integers $=\{0, \pm 1, \pm 2, \pm 3, \ldots \ldots$.
$\mathrm{Q}:$ The set of all rational numbers $=\left\{x: x=\frac{a}{b}, a, b \in \mathrm{Z}\right.$ and $\left.b \neq 0\right\}$
R : The set of real numbers $=(-\infty,+\infty)$
Representation of Set: There are two methods of representing a set:

1. Roster or tabular form.

Example: The set of all even positive integers less than 7 is described in roster form as $\{2,4,6\}$.
2. Set-builder form.

Example: The set of all vowels in the English alphabet is described in set-builder form as $\{x: x$ is a vowel in English alphabet $\}$

Important Examples:

1. Write the set $\mathrm{A}=\{1,4,9,16,25, \ldots$.$\} in set-builder form.$

Answer: We may write the set $\mathrm{A}=\{x: x$ is the square of a natural number $\}$
Or, we can write $\mathrm{A}=\left\{x: x=n^{2}\right.$, where $\left.n \in \mathrm{~N}\right\}$
2. Write the set $\mathrm{A}=\{x: x$ is a letter of the word MATHEMATICS $\}$ in roster form.

Answer: $\quad A=\{M, A, T, H, E, I, C, S\}$

Types of Sets

The Empty Set: A set which does not contain any element is called the empty set or the null set.
Symbol: \{ \} or ϕ (phi)
Example:

1. Let $\mathrm{A}=\{$ Students enrolled in Mechatronics and Manufacturing Courses in your class \}. Then A is the empty set.

Therefore, $\mathrm{A}=\phi$.
2. Let $\mathrm{A}=\{x: 3<x<4, x$ is a natural number $\}$. Then A is the empty set, because there is no natural number between 3 and 4 .

Therefore $\mathrm{A}=\phi$.
Finite and Infinite Sets: A set which is empty or consists of a definite number of elements is called finite otherwise, the set is called infinite.

Examples:

1. Let A be the set of the days of the week. Then A is finite.
2. Set of all natural numbers $\mathrm{N}=\{1,2,3,4, \ldots$.$\} is Infinite.$

Equal Sets: Two sets A and B are said to be equal if they have exactly the same elements and we write $A=B$.

Otherwise, the sets are said to be unequal and we write $\mathrm{A} \neq \mathrm{B}$.
Examples:
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{3,1,4,2\}$. Then $\mathrm{A}=\mathrm{B}$.

Subsets: A set A is said to be a subset of a set B if every element of A is also an element of B.
We write $\mathrm{A} \subset \mathrm{B}$ if whenever $a \in \mathrm{~A}$, then $a \in \mathrm{~B}$.
Therefore, $\mathrm{A} \subset \mathrm{B}$ if $a \in \mathrm{~A} \Rightarrow a \in \mathrm{~B}$
We read the above statement as "A is a subset of B if a is an element of A implies that a is also an element of B".

Examples: Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2,3,4,5,6\}$
Then, A is subset of B . we write as $\mathrm{A} \subset \mathrm{B}$.
Note:

1. $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A} \Leftrightarrow \mathrm{B}=\mathrm{A}$.
2. If A is not a subset of B , we write $\mathrm{A} \not \subset \mathrm{B}$.

Example: Let $\mathrm{A}=\{a, e, i, o, u\}$ and $\mathrm{B}=\{a, b, c, d, e, f\}$.
Then A is not a subset of B, also B is not a subset of A.
3. ϕ is subset of every set.
4. Let A and B be two sets. If $A \subset B$ and $A \neq B$, then A is called a proper subset of B and B is called superset of A .

Example: Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{1,2,3,4\}$
then A is proper subset of B and B is superset of A.
5. It is evident that $\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R}$.

Closed and open intervals of R:

1. Closed: $[a, b]=\{x: a \leq x \leq b\}$
2. Open: $(a, b)=\{x: a<x<b\}$

Power Set: The collection of all subsets of a set A is called the power set of A. It is denoted by $\mathrm{P}(\mathrm{A})$. In $\mathrm{P}(\mathrm{A})$, every element is a set.

Example: Let $\mathrm{A}=\{1,2,3\}$ total 3 elements Then $\mathrm{P}(\mathrm{A})=\{\phi,\{1,2,3\},\{1\},\{2\},\{3\},\{\mathrm{P}, 2\},\{1,3\},\{2,3\}\}$. Total 8 elements.

Note: If number of elements in $\mathrm{A}=n(\mathrm{~A})=m$
Then, number of elements in Power set of $\mathrm{A}=n[\mathrm{P}(\mathrm{A})]=2^{m}$.
Universal Set: A universal set is a set which contains all elements, including itself.
Example: The set of real number R is a universal set.

Operations on Sets

Union of sets: Let A and B be any two sets.
The union of A and B is the set which consists of all the elements of A and all the elements of B, the common elements being taken only once.
The symbol " \cup " is used to denote the union. We write $\mathrm{A} \cup \mathrm{B}$ and usually read as 'A union B'.

$$
\Rightarrow \quad \mathrm{A} \cup \mathrm{~B}=\{x: x \in \mathrm{~A} \text { or } x \in \mathrm{~B}\} .
$$

Examples:

1. Let $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$

Then $\mathrm{A} \cup \mathrm{B}=\{2,4,6,8,10,12\}=\mathrm{B} \cup \mathrm{A}$
2. Let $\mathrm{A}=\{a, e, i, o, u\}$ and $\mathrm{B}=\{a, i, u\}$

Then $\mathrm{A} \cup \mathrm{B}=\{a, e, i, o, u\}=\mathrm{A}$
This example shows that if $B \subset A$, then $A \cup B=A$.

Intersection of sets: The intersection of sets A and B is the set of all elements which are common to both A and B. The symbol " \cap " is used to denote the intersection. The intersection of two sets A and B is the set of all those elements which belong to both A and B.

$$
\Rightarrow \mathrm{A} \cap \mathrm{~B}=\{x: x \in \mathrm{~A} \text { and } x \in \mathrm{~B}\} .
$$

Examples:

1. Let $A=\{2,4,6,8\}$ and $B=\{6,8,10,12\}$.

Then $\mathrm{A} \cap \mathrm{B}=\{6,8\}=\mathrm{B} \cap \mathrm{A}$
2. $A=\{1,2,3,4,5,6,7,8,9,10\}$ and $B=\{2,3,5,7\}$.
then $\mathrm{A} \cap \mathrm{B}=\{2,3,5,7\}=\mathrm{B}$. We note that $\mathrm{B} \subset \mathrm{A}$ and that $\mathrm{A} \cap \mathrm{B}=\mathrm{B}$.
Note: Two sets A and B are said to be mutually disjoint sets if $A \cap B=\phi$ विदालय
Example: Let $\mathrm{A}=\{a, b, c\}$ and $\mathrm{B}=\{x, y, z\}$ then RMA SKILL U
$\mathrm{A} \cap \mathrm{B}=\phi$
Therefore A and B are disjoint sets.

Difference of sets: It is the set of elements which belong to A but not to B .
Symbol: A-B (A minus B)
$\Rightarrow \mathrm{A}-\mathrm{B}=\{x: x \in \mathrm{~A}$ and $x \notin \mathrm{~B}\}$
Example: Let $\mathrm{A}=\{1,2,3,4,5,6\}$ and $\mathrm{B}=\{2,4,6,8\}$ then,
A-B $=\{1,3,5\}$
and $\mathrm{B}-\mathrm{A}=\{8\}$

Complement of a Set: Let U be the universal set and A is a subset of U.
Then the complement of A is the set of all elements of U which are not the elements of A . it is denoted by A^{\prime}

$$
\begin{aligned}
\Rightarrow & \mathrm{A}^{\prime}=\{x: x \in \mathrm{U} \text { and } x \notin \mathrm{~A}\} \\
& \text { Obviously } \mathrm{A}^{\prime}=\mathrm{U}-\mathrm{A} .
\end{aligned}
$$

Example: Let $\mathrm{U}=\{1,2,3,4,5,6,7,8,9,10\}$ and $\mathrm{A}=\{1,3,5,7,9\}$ then $\mathrm{A}^{\prime}=\{2,4,6,8,10\}$
Also $\quad\left(\mathrm{A}^{\prime}\right)^{\prime}=\{1,3,5,7,9\}=\mathrm{A}$
Note:

1. $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
2. $\mathrm{U}^{\prime}=\phi$

Example: Let $\mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=\{2,3\}$ and $\mathrm{B}=\{3,4,5\}$

$$
\text { then } \mathrm{A}^{\prime}=\{1,4,5,6\} \text { and } \mathrm{B}^{\prime}=\{1,2,6\}
$$

Therefore $\quad A^{\prime} \cap B^{\prime}=\{1,6\}$
Also $\quad A \cup B=\{2,3,4,5\}$, so that $(A \cup B)^{\prime}=\{1,6\}$
Therefore $\quad(A \cup B)^{\prime}=\{1,6\}=A^{\prime} \cap B^{\prime}$
Similarly $\quad A \cap B=\{3\}$, so that $(A \cap B)^{\prime}=\{1,2,4,5,6\}$
And $\quad A^{\prime} \cup B^{\prime}=\{1,2,4,5,6\}$
Therefore $(A \cap B)^{\prime}=\{1,2,4,5,6\}=A^{\prime} \cup B^{\prime}$

Cartesian product of Sets:

Cartesian Products of Sets: Given two non-empty sets A and B.
HARYA Then Cartesian product $\mathrm{A} \times \mathrm{B}$ is set of ordered pairs of elements from A and B.

$$
\Rightarrow \mathrm{A} \times \mathrm{B}=\{(a, b): a \in \mathrm{~A}, b \in \mathrm{~B}\}
$$

If either A or B is the null set, then $A \times B$ will also be empty set $\Rightarrow A \times B=\phi$
Example: Let $\mathrm{A}=\{1,2,3,4\}$, total elements $=4$
and $\mathrm{B}=\{a, b, c\}$, total elements $=3$
Then,

$$
\mathrm{A} \times \mathrm{B}=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c),(4, a),(4, b),(4, c)\}
$$

Note:

1. If number of elements in $\mathrm{A}=n(\mathrm{~A})=m$ and number of elements in $\mathrm{A}=n(\mathrm{~B})=n$, Number of elements in $\mathrm{A} \times \mathrm{B}=n(\mathrm{~A} \times \mathrm{B})=m n$

Introduction to Relations

Relations: A relation R from a non-empty set A to a non-empty set B is a subset of the Cartesian product $\mathrm{A} \times \mathrm{B}$.

Therefore, $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$.
Note:

1. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in $\mathrm{A} \times \mathrm{B}$.
2. The second elements are called the image of the first elements.

Example: Let $\mathrm{A}=\{1,2,3,4,5,6\}$. Define a relation R from A to A by

$$
\mathrm{R}=\{(x, y): y=x+1\}
$$

Depict this relation using an arrow diagram.
Solution: By the definition of the relation,

$$
R=\{(1,2),(2,3),(3,4),(4,5),(5,6)\}
$$

The corresponding arrow diagram is described in the figure:

Note: The total number of relations that can be defined from a set A to a set B is the number of possible subsets of $A \times B$.

If $n(\mathrm{~A})=m$ and $n(\mathrm{~B})=n$, then $n(\mathrm{~A} \times \mathrm{B})=m n$ and the total number of relations is $2^{m n}$. कोशल विश्वविधालय

Example: Let $\mathrm{A}=\{1,2\}$ then $n(\mathrm{~A})=2$ and $\mathrm{B}=\{3,4,5\}$, then $n(\mathrm{~B})=3$ NIVERSITY
Therefore,
$\mathrm{A} \times \mathrm{B}=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)\}$
Then $n(\mathrm{~A} \times \mathrm{B})=6$
and the number of subsets of $A \times B=2^{6}$.
Therefore, the number of Relations from A into B will be 2^{6}.

Introduction to Functions

Function: A relation from a set X to a set Y is said to be a function (f) if every element of set X has one and only one image in set Y .

If f is a function from X to Y and $(x, y) \in f$,
then $f(x)=y$, where y is called the image of x under f and x is called the preimage of y under f.

The function (f) from X to Y is denoted by:

$$
f: \mathrm{X} \rightarrow \mathrm{Y}
$$

Example: Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?
(i) $\mathrm{R}=\{(2,1),(3,1),(4,2)\}$
(ii) $\mathrm{R}=\{(2,2),(2,4),(3,3),(4,4)\}$
(iii) $\mathrm{R}=\{(1,2),(2,3),(3,4),(4,5),(5,6),(6,7)\}$

Answer: (i) Since 2, 3, 4 are the elements of domain of R having their unique images, this relation R is a function.
(ii) Since the same first element 2 corresponds to two different images 2 and 4 , this relation is not a function.
(iii) Since every element has one and only one image, this relation is a function.

Types of Functions - Linear, Quadratic and Polynomial

Polynomial Function: A function $f: \mathrm{R} \rightarrow \mathrm{R}$ is said to be polynomial function if for each x in R ,

$$
\begin{aligned}
& y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{n} x^{n} \text { Where, } n \text { is a non-negative integer and } \\
& a_{0}, a_{1}, a_{2} \ldots ., a_{n} \in \mathrm{R}
\end{aligned}
$$

Example: The functions defined by $f(x)=8 x^{2}-3 x+1$ (Degree $=2$) and

$$
g(x)=x^{10}-\sqrt{3} x^{4}+x^{2}-13(\text { Degree }=10) \text { are some examples of polynomial functions, }
$$

whereas the function h defined by $h(x)=x^{2 / 3}+\frac{4}{7} x+1$ is not polynomial function.
HARYANA VISHWAIARMA SKILLUNIVERSITY

Some functions and their graphs:

Constant function: Define the function $f: \mathrm{R} \rightarrow \mathrm{R}$ by
$y=f(x)=c, x \in \mathrm{R}$
Where, c is a constant and each $x \in \mathrm{R}$.
Linear Function: Polynomial functions of degree 1 are called linear function. Therefore function of the form,

$$
\begin{aligned}
y=f(x)= & a_{0}+a_{1} x \\
& a_{0}, a_{1} \in \mathrm{R}
\end{aligned}
$$

For example:
Identity Function: Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a real valued function define as:

$$
y=f(x)=x \text { for each } x \in \mathrm{R} .
$$

Such a function is called the identity function.
Here the domain and range of f are R .
The graph is a straight line which passes through the origin.

Quadratic Function: Polynomial functions of degree 1 are called linear function.
Therefore function of the form, $y=f(x)=a_{0}+a_{1} x+a_{2} x^{2}, a_{0}, a_{1}, a_{2} \in \mathrm{R}$
For example Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a real valued function define as:

$$
\text { (Parabola): } \quad y=f(x)=x^{2} \text { for each } x \in \mathbf{R} \text {. }
$$

The Modulus Function: The function $f: \mathrm{R} \rightarrow \mathrm{R}$ defined by

For each non-negative value of $x, f(x)$ is equal to x.
But for negative values of x, the value of $f(x)$ is the negative of the value of x.
Therefore, $f(x)= \begin{cases}x, & x \geq 0 \\ -x, & x<0\end{cases}$

function.

$$
f(x)=|x| \text { for each } x \in \mathrm{R} \text { is called modulus }
$$

योगः कर्मसु कौरालम
हरियाणा विश्वकर्मा कौशल विश्वविद्यालय HARYANA VISHWAKARMA SKILL UNIVERSITY

